

EC1325/01

Thermal Resistance of Nine Samples of Three Glasswool Pipe Insulation Products

Author:

Sheng-Huei Huang

Technician

正要

Reviewer:

Roger Stanford

Senior Technician

IANZ Approved Signatory

All tests reported herein have been undertaken at the BRANZ Ltd laboratories located in Judgeford, Porirua, New Zealand, unless stated otherwise.

Contact:

BRANZ PTY Ltd Unit 3/20 West Street

Brookvale NSW 2100 Australia

Tel: +61 2 9938 6011 Fax: +61 2 9938 6911 www.branz.com.au

International Accreditation New Zealand (IANZ) has a Mutual Recognition Agreement (MRA) with the National Association of Testing Authorities (NATA), such that both organisations recognise accreditations by IANZ and NATA as being equivalent. Users of test reports are recommended to accept test reports in the name of either accrediting body

Project Number: EC1325 BRANZ Pty JC0908

Date of Issue: 17 May 2007

Page 1 of 5 Pages

WARNING: This document is an "Output" as that term is defined in an agreement with BRANZ. This Output can only be used and relied on in accordance with the terms and conditions of that Agreement. BRANZ is not liable for the consequences for anyone of use of the Output other than in strict compliance with the terms and conditions of the Agreement.

Thermal Resistance of Nine Samples of Three Glasswool Pipe Insulation Products

1. CLIENT

FM Insulation Supplies Unit 6/10 Bromley Emu Plains NSW 2750 Australia

2. DESCRIPTION OF TEST EQUIPMENT

The test equipment used was a LaserComp Fox 600 heat flow meter. The specimen for testing is placed horizontally in the apparatus, with upwards heat flows. The hot and cold plates each have a 250 mm x 250 mm heat flux transducer embedded in their surface. The edges of the specimen are insulated from the room ambient temperature. The uncertainty in individual thermal conductivity and thermal resistance measurements is estimated to be 3%.

3. PROCEDURE

The specimens, supplied by the client, were nine samples in total. There are three yellow glasswool pipe insulation products (client reference 1a, 1b and 1c), three samples of each type. Each of the nine samples comprised two 180 degree halves. They were cut, flattened, and then made up to the test size of 600 x 600 mm and tested at the actual thicknesses for the products, to the requirements of ASTM C518-04.

4. RESULTS

Nominal Upper Plate Temperature	13 '	°C
Nominal Lower Plate Temperature	33	°C
Nominal Difference in Temperature	20	K
Nominal Mean Temperature	23	°C

RSS

Report Number: EC1325/01

Date of Issue: 17 May 2007

Page 3 of 5 Pages

Product 1 a (25mm)

Calibration Check Date		23 Jan 07	07 May 07	07 May 07
Calibration Check Sample		EPS 13	EPS 08	EPS 08
BRANZ reference		D3861	D3916	D3915
Client reference		Product 1a/1	Product 1a/2	Product 1a/3
'grams per sq. metre'	g/m ²	1342	1650	1869
Test Date		26 Jan	09 May	08 May
Test thickness	mm	25.1	25.9	26.8
Nominal thickness	mm	25	25.0	25.0
Temperature difference	K	20.0	20.0	20.0
Mean Temperature	°C	23.0	23.0	23.0
Heat-flux	W/m ²	27.21	26.62	25.08
Thermal resistance	m ² K/W	0.735	0.752	0.798
Thermal conductivity	W/mK	0.0341	0.0344	0.0336
Difference between heat flux transducers	%	0.3	0.1	0.3

Product 1 b (40mm)

Calibration Check Date		23 Jan 07	07 May 07	07 May 07
Calibration Check Sample		EPS 13	EPS 08	EPS 08
BRANZ reference		D3862	D3918	D3917
Client reference		Product 1b/1	Product 1b/2	Product 1b/3
'grams per sq. metre'	g/m ²	2386	2286	2722
Test Date		26 Jan	09 May	09 May
Test thickness	mm	38.7	41.0	39.3
Nominal thickness	mm	40	40.0	40.0
Temperature difference	K	20.0	20.0	20.0
Mean Temperature	°C	23.0	23.0	23.0
Heat-flux	W/m ²	18.18	18.05	17.43
Thermal resistance	m ² K/W	1.100	1.108	1.147
Thermal conductivity	W/mK	0.0352	0.0370	0.0343
Difference between heat flux transducers	%	0.5	0.9	0.7

BRANZ

Date of Issue: 17 May 2007

Product 1c (50mm)

Calibration Check Date		23 Jan 07	07 May 07	07 May 07
Calibration Check Sample		EPS 13	EPS 08	EPS 08
BRANZ reference		D3863	D3920	D3919
Client reference		Product 1c/1	Product 1c/2	Product 1c/3
'grams per sq. metre'	g/m ²	2942	2739	2897
Test Date		29 Jan	11 May	10 May
Test thickness	mm	46.0	50.3	47.3
Nominal thickness	mm	50	50.0	50.0
Temperature difference	K	20.0	20.0	20.0
Mean Temperature	°C	23.0	23.0	23.0
Heat-flux	W/m ²	14.92	14.01	14.08
Thermal resistance	m ² K/W	1.341	1.428	1.421
Thermal conductivity	W/mK	0.0343	0.0352	0.0333
Difference between heat flux transducers	%	0.5	0.5	0.8

These measurements comply with the requirements of ASTM C518. The uncertainty in the measurements of thermal conductivity and thermal resistance are estimated to be \pm 3%.

5. REFERENCES

ASTM C518-04 Standard Test Method for Steady-State Heat Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus.

American Society for Testing and Materials, Philadelphia, PA, 2004.

BRANZ

RSS

Report Number: EC1325/01 Date of Issue: 17 May 2007 Page 5 of 5 Pages